
µONOS for Developers

Andrea Campanella, Jordan Halterman
Open Networking Foundation

<andrea,jordan>@opennetworking.org



Overview 
• μONOS architecture overview

• Code structure

• Development environment

• Deployment 

• Development workflow

• How to contribute



What is µONOS?

• µONOS is the next generation architecture of ONOS

• Aims to provide a comprehensive platform for operations
• configuration, control, monitoring, verification, live update, 

diagnostics

• Aims to provide first-class support for 5G RAN edge

• Based on µ-services, gRPC interfaces, next-gen SDN interfaces
• e.g. gNMI, gNOI, P4Runtime, gRIBI, etc.

• Cloud-native (Kubernetes) and aimed at edge-cloud 



µONOS GitHub Repositories

• Multiple repos that reflect the component architecture
• Components built/packaged independently
• Current repos include: 

onos-config, onos-topo, onos-control,
onos-gui, onos-cli, onos-test

• More refactoring to follow
• Everything hosted under https://github.com/onosproject



uONOS Code Architecture

https://github.com/onosproject

https://github.com/onosproject


Consistency

Tools, operations, and processes are consistent across all 
subsystems and their repositories

Learn the workflow and tools for one service:
contribute to all the microservices/repos 



7

µONOS Deployment 

network

k/v

k/v

k/v

cfg
gNMI/gNOI

gNMI/gNOI

ctl
P4Runtime

P4Runtime

ctl
P4Runtime

P4Runtime

control
P4Runtime

P4Runtimeconfig
gNMI/gNOI

gNMI/gNOItopology
NetModel

NetDiscotopology
NetModel

NetDisco

discovery

certs
NetCerts

certs
NetCerts k8s

adapter
gNMI/gNOI/P4Runtime

various protocolsadapter
gNMI/gNOI/P4Runtime

various protocols

ran
gRNI

ran
gRNI

ran
SD-RAN

gRNI

gui
gRPC

cli
gRPCztp

gNMI/gNOI/P4Runtime

gRPC

app X
gRPC

gRPC

app Y
gRPC

gRPC

. . .

discoverydiscovery



µONOS Deployment 



µONOS Deployment 



µONOS and Atomix
• Cloud native database

• Kubernetes controller for database management
• Atomix nodes for persistence and replication

• Implements Protobuf data structures API
• Atomix Go client used in Go services for persistence/fault 

tolerance 
• https://github.com/atomix



Golang Language
• Significant momentum in ecosystem
• Excellent integration with gRPC and native Supports 

streaming APIs
• no JVM or JIT compiler
• Go has garbage collection but is less prone to memory leaks, 

faster and safer code development
• GO GC cycles do require STW pauses which does have 

some impact with respect to apps that have real-time 
requirements; however:

• Current (2017+) releases of Go runtime have ~500µs STW 
pauses

• Real-time sensitive portions in C/C++ if required and Go 
runtime using foreign function interface (FFI)

https://blog.golang.org/ismmkeynote


Developer Environment
Standard Go project structure 

• https://github.com/golang-standards/project-
layout

Dependency management and build done through 
go modules

• GO111MODULE=on
• use go.sum and go.mod

https://github.com/golang-standards/project-layout


Developer Environment (Docker)

Go code runs in a docker container 

Tagged images easily downloadable from 
dockerhub: 
https://hub.docker.com/u/onosproject

Build your own images as you change code: 
`make images` in all of the uploaded repos

https://hub.docker.com/u/onosproject


Developer Environment

Kubernetes manages the deployment of 
docker containers:
• Helm Charts
• Onit test tools

Kubernetes is usually installed/run:
• bare-metal
• Kind on any docker capable env: 

https://kind.sigs.k8s.io



Developer Environment

In short: 



ONIT Overview

ONIT: ONOS Integration Test framework
• CLI for development and testing on Kubernetes
• Deploy µONOS in a Kubernetes cluster 
• Run integration tests: 

• end to end “black-box” testing of µONOS subsystems 
• E.g. subscription, get, set, model plugins … 

• Run benchmarks
• Remote debugging via delve
• Deploy and manage applications inside k8s

https://github.com/onosproject/onos-test

https://github.com/onosproject/onos-test


ONIT Development Workflow



ONIT Development Workflow



ONIT Development Workflow



ONIT Development Workflow



ONIT Development Workflow



ONIT Development Workflow



ONIT Development Workflow



ONIT Development Workflow



ONIT Development Workflow



ONIT Development Workflow



Contributing to µONOS

Follow the developer workflow:
https://github.com/onosproject/onos-config/blob/master/docs/dev_workflow.md
4 main sections
• Fork the project, download the code, create a local development 

environment
• Code, Code, Code then build and test
• Submit a pull request
• work with the community on 

comments and enhancements
• Get your PR merged and 

see your code in action

https://github.com/onosproject/onos-config/blob/master/docs/dev_workflow.md


Github

µONOS uses GitHub as an all in one integrated tool for
code, issues, comments, documentation, PR, CI/CD:
• Avid tool multiplication and learning curve
• exploit all in one integration
• one stop shop for everything related to the project
• automated CI/CD integration on PRs with Travis



Github and Travis

Travis, simple, well know, ubiquitous CI/CD tool

µONOS Travis workflow:
• Build docker images based on submitted changes
• Deploy Kind cluster with new docker images
• Integrations tests 
• License
• Code checkstyle and lint (golangci-lint)



How to get involved

• Join #micro-onos channel on onosproject.slack.com

• Attend ONOS TST meetings
• bi-weekly Wednesdays at 9:00 PST/PDT

• Fork and send pull-requests to https://github.com/onosproject
repositories

• Participate in onos-dev@onosproject.org mailing list

https://github.com/onosproject
mailto:onos-dev@onosproject.org


Thank You

Follow Up Links:
µONOS repositories
Atomix repositories

https://github.com/onosproject
https://github.com/atomix

