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Overview 
• μONOS architecture overview

• Code structure

• Development environment

• Deployment 

• Development workflow

• How to contribute



What is µONOS?

• µONOS is the next generation architecture of ONOS

• Aims to provide a comprehensive platform for operations
• configuration, control, monitoring, verification, live update, 

diagnostics

• Aims to provide first-class support for 5G RAN edge

• Based on µ-services, gRPC interfaces, next-gen SDN interfaces
• e.g. gNMI, gNOI, P4Runtime, gRIBI, etc.

• Cloud-native (Kubernetes) and aimed at edge-cloud 



µONOS GitHub Repositories

• Multiple repos that reflect the component architecture
• Components built/packaged independently
• Current repos include: 

onos-config, onos-topo, onos-control,
onos-gui, onos-cli, onos-test

• More refactoring to follow
• Everything hosted under https://github.com/onosproject



uONOS Code Architecture

https://github.com/onosproject

https://github.com/onosproject


Consistency

Tools, operations, and processes are consistent across all 
subsystems and their repositories

Learn the workflow and tools for one service:
contribute to all the microservices/repos 
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µONOS and Atomix
• Cloud native database

• Kubernetes controller for database management
• Atomix nodes for persistence and replication

• Implements Protobuf data structures API
• Atomix Go client used in Go services for persistence/fault 

tolerance 
• https://github.com/atomix



Golang Language
• Significant momentum in ecosystem
• Excellent integration with gRPC and native Supports 

streaming APIs
• no JVM or JIT compiler
• Go has garbage collection but is less prone to memory leaks, 

faster and safer code development
• GO GC cycles do require STW pauses which does have 

some impact with respect to apps that have real-time 
requirements; however:

• Current (2017+) releases of Go runtime have ~500µs STW 
pauses

• Real-time sensitive portions in C/C++ if required and Go 
runtime using foreign function interface (FFI)

https://blog.golang.org/ismmkeynote


Developer Environment
Standard Go project structure 

• https://github.com/golang-standards/project-
layout

Dependency management and build done through 
go modules

• GO111MODULE=on
• use go.sum and go.mod

https://github.com/golang-standards/project-layout


Developer Environment (Docker)

Go code runs in a docker container 

Tagged images easily downloadable from 
dockerhub: 
https://hub.docker.com/u/onosproject

Build your own images as you change code: 
`make images` in all of the uploaded repos

https://hub.docker.com/u/onosproject


Developer Environment

Kubernetes manages the deployment of 
docker containers:
• Helm Charts
• Onit test tools

Kubernetes is usually installed/run:
• bare-metal
• Kind on any docker capable env: 

https://kind.sigs.k8s.io



Developer Environment

In short: 



ONIT Overview

ONIT: ONOS Integration Test framework
• CLI for development and testing on Kubernetes
• Deploy µONOS in a Kubernetes cluster 
• Run integration tests: 

• end to end “black-box” testing of µONOS subsystems 
• E.g. subscription, get, set, model plugins … 

• Run benchmarks
• Remote debugging via delve
• Deploy and manage applications inside k8s

https://github.com/onosproject/onos-test

https://github.com/onosproject/onos-test


ONIT Development Workflow
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Contributing to µONOS

Follow the developer workflow:
https://github.com/onosproject/onos-config/blob/master/docs/dev_workflow.md
4 main sections
• Fork the project, download the code, create a local development 

environment
• Code, Code, Code then build and test
• Submit a pull request
• work with the community on 

comments and enhancements
• Get your PR merged and 

see your code in action

https://github.com/onosproject/onos-config/blob/master/docs/dev_workflow.md


Github

µONOS uses GitHub as an all in one integrated tool for
code, issues, comments, documentation, PR, CI/CD:
• Avid tool multiplication and learning curve
• exploit all in one integration
• one stop shop for everything related to the project
• automated CI/CD integration on PRs with Travis



Github and Travis

Travis, simple, well know, ubiquitous CI/CD tool

µONOS Travis workflow:
• Build docker images based on submitted changes
• Deploy Kind cluster with new docker images
• Integrations tests 
• License
• Code checkstyle and lint (golangci-lint)



How to get involved

• Join #micro-onos channel on onosproject.slack.com

• Attend ONOS TST meetings
• bi-weekly Wednesdays at 9:00 PST/PDT

• Fork and send pull-requests to https://github.com/onosproject
repositories

• Participate in onos-dev@onosproject.org mailing list

https://github.com/onosproject
mailto:onos-dev@onosproject.org


Thank You

Follow Up Links:
µONOS repositories
Atomix repositories

https://github.com/onosproject
https://github.com/atomix

