
Leveraging P4 to Automatically Validate
Networking Switches

Stefan
Heule
heule@

google.com

Konstantin
Weitz
konne@

google.com

Waqar
Mohsin
wmohsin@
google.com

Lorenzo
Vicisano

vicisano@
google.com

Amin
Vahdat

vahdat@
google.com

Stefan
Heule
heule@

google.com

Leveraging P4 to Automatically
Validate Networking Switches

Konstantin
Weitz
konne@

google.com

Waqar
Mohsin
wmohsin@
google.com

Lorenzo
Vicisano

vicisano@
google.com

Amin
Vahdat

vahdat@
google.com

P4 on Programmable Switches
P

ro
gr

am
m

ab
le

P

ar
se

r

Memory
ALU

Memory
ALU

Memory
ALU

P
ro

gr
am

m
ab

le

D
ep

ar
se

r

Memory
ALU

P4
Program

P4 program
determines
what the
Hardware does

P4 on Fixed-Function Switches

P4
Program

Fi
xe

d
P

ar
se

r

L3 Admit

L3 Routing

Access
Control

Lists

Fi
xe

d
D

ep
ar

se
r

Virtual
Routing

and
Forwarding

L2 Routing

Hardware
determines
what the P4
program does

P4 at Google

P4
Program

P4 program
determines what the

hardware does

Hardware

P4
Program

Hardware

Hardware
determines what the

P4 program does

P4 at Google

P4
Program

P4 program
determines what the

hardware does

Hardware limits what P4 program can
do, but only model our use case:

- Only tables we use (e.g. no L2)
- Only match keys we use
- Logical tables that have semantic

meaning (abstraction)

Hardware

P4
Program

Hardware

P4
Program

Hardware

Hardware
determines what the

P4 program does

Why would you want to do this?

Clear contract of switch behavior enables:
● Operation of a heterogeneous fleet
● Automatically generating switch config
● Automated switch validation

Automated Switch Validation

Automated Switch Validation

Test inputs are automatically generated,
either from production data,

or by analyzing our P4 programs.

Automated Switch Validation

We validate a single
switch chip, not the

whole network.

Automated Switch Validation

Test outputs are
compared to a P4

program simulation.

How do we test the switch?

P4 Switch

ATPG: Automated Test
Packet Generation

Counters, Meters,
Hashing

Dataplane

Replay production table
entries

Fuzzer to randomly create
table entry insert/delete
requests

P4
RTControlplane

Controlplane Fuzz Testing

Controlplane Fuzzing

Randomly generate table entry requests
according to P4 program grammar

- Mostly generate well-formed requests
- Sometimes generate ill-formed ones
- Intuition: Need to be well-formed enough to not get

rejected early

Send table entry to switch, check that they
are handled correctly

- E.g. well-formed insert must succeed (unless
resource exhausted or already present)

- P4 allows us to accurately predict the expected error
(or success)

P4 Switch

P4Runtime

Switch-Under-Test

Random
Table Entries

Controlplane Fuzzing: Resource exhaustion

Time

Ta
bl

e
en

tr
ie

s

Resource
Exhaustion
Forbidden

Resource
Exhaustion
Allowed

Specified
Resource

Limit

P4 Switch

P4Runtime

Switch-Under-Test

Random
Table Entries

Automated Test Packet Generation

Automated Test
Packet Generation

Table
entries

Switch

Expected
Output
Packets

Actual
Output
Packets

Verify
Match

Packet
Generator

Input
Packets

Legend:

Software

Controlplane

Dataplane

P4Runtime

P4 Simulator
(BMv2)

P4Runtime

VRF DstIP

42 10.152.8/24

… ...

Strategy: Hitting every table entry on the switch
VRF Classifier IPv4 LPM

EthType SrcMac Port Set VRF

0x800 aa:bb:cc:
dd:ee:ff

* 1337

0x800 * 4 42

VRF == 42 & DstIP[32:16] == "10.152" // hit target IPv4 LPM entry

SAT solver
finds packets to

satisfy the formula

42 10.152/16

& !(VRF == 42 & DstIP[32:8] == "10.152.8") & !(...) // avoid all other IPv4 LPM entry

Want to hit
this entry

// encode VRF assignment
& ((!(EthType == 0x800 & SrcMac == "aa:bb:cc:dd:ee:ff")
 & (EthType == 0x800 & Port == 4)) → VRF == 42)

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Dataplane Testing: Why Does It Work?

SAT is an excellent match for switches/P4:

- Everything is finite
(no lists, loops, recursion, etc)

- Switch semantics are rigorously defined in the P4
program

Powerful tool to ask complex questions about behavior
of the switch

Testing Other Aspects: Counters, Meters

Switch

P4Runtime

P4 Simulator
(BMv2)

P4Runtime
Comparing the switch against
simulator is very general
- Allows us to easily test other

aspects like counters

Challenge: hashing

Dataplane Testing: why it works

Test oracle: Clear semantics allow simulator to
precisely predict switch behavior

Test generation: Semantics are simple enough
that tools can reason about them
automatically

P4

OpenFlow

Lack of formal and computer-readable
specification makes both difficult to do
automatically

Small number of devs create extensive set of automated tests

So far, we found over 100 bugs, in several components:

- Bugs in the Switch Software Stack

- Bugs in our SDN Controller

- Bugs in our P4 program

- Bugs in the P4 Runtime protocol

- Bugs in BMv2

Does Automated Switch Validation Work?

Conclusion

P4 provides a clear contract of switch behavior:
- Enables operation of a heterogeneous fleet
- Enables automated switch validation

(it's fast and finds a broad spectrum of bugs)

Key Takeaways

Sounds interesting? We're hiring! Talk to us :)
Email: heule@google.com

