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P4 on Programmable Switches
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P4 on Fixed-Function Switches
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P4 at Google
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P4 at Google
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Hardware limits what P4 program can 
do, but only model our use case:

- Only tables we use (e.g. no L2)
- Only match keys we use
- Logical tables that have semantic 

meaning (abstraction)
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Why would you want to do this?

Clear contract of switch behavior enables:
● Operation of a heterogeneous fleet
● Automatically generating switch config
● Automated switch validation



Automated Switch Validation



Automated Switch Validation

Test inputs are automatically generated, 
either from production data,

or by analyzing our P4 programs.



Automated Switch Validation

We validate a single 
switch chip, not the 

whole network.



Automated Switch Validation

Test outputs are 
compared to a P4 

program simulation.



How do we test the switch?

P4 Switch

ATPG: Automated Test 
Packet Generation 

Counters, Meters, 
Hashing

Dataplane

Replay production table 
entries

Fuzzer to randomly create 
table entry insert/delete 
requests

P4
RTControlplane



Controlplane Fuzz Testing



Controlplane Fuzzing

Randomly generate table entry requests 
according to P4 program grammar

- Mostly generate well-formed requests
- Sometimes generate ill-formed ones
- Intuition: Need to be well-formed enough to not get 

rejected early

Send table entry to switch, check that they 
are handled correctly

- E.g. well-formed insert must succeed (unless 
resource exhausted or already present)

- P4 allows us to accurately predict the expected error 
(or success)

P4 Switch

P4Runtime

Switch-Under-Test

Random
Table Entries



Controlplane Fuzzing: Resource exhaustion
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Automated Test Packet Generation



Automated Test 
Packet Generation 

Table 
entries

Switch

Expected 
Output
Packets

Actual 
Output
Packets

Verify 
Match

Packet 
Generator

Input 
Packets

Legend:

Software

Controlplane

Dataplane

P4Runtime

P4 Simulator
(BMv2)

P4Runtime



VRF DstIP

42           10.152.8/24

…             ...

Strategy: Hitting every table entry on the switch
VRF Classifier IPv4 LPM

EthType SrcMac Port Set VRF

0x800 aa:bb:cc:
dd:ee:ff

* 1337

0x800 * 4 42

VRF == 42 & DstIP[32:16] == "10.152"                                  // hit target IPv4 LPM entry

SAT solver
finds packets to 

satisfy the formula

42           10.152/16

& !(VRF == 42 & DstIP[32:8] == "10.152.8") & !(...)             // avoid all other IPv4 LPM entry

Want to hit
this entry

// encode VRF assignment           
& ((!(EthType == 0x800 & SrcMac == "aa:bb:cc:dd:ee:ff")
    & (EthType == 0x800 & Port == 4)) → VRF == 42) 

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem


Dataplane Testing: Why Does It Work?

SAT is an excellent match for switches/P4:

- Everything is finite
(no lists, loops, recursion, etc)

- Switch semantics are rigorously defined in the P4 
program

Powerful tool to ask complex questions about behavior 
of the switch



Testing Other Aspects: Counters, Meters

Switch

P4Runtime

P4 Simulator
(BMv2)

P4Runtime
Comparing the switch against 
simulator is very general
- Allows us to easily test other 

aspects like counters

Challenge: hashing



Dataplane Testing: why it works

Test oracle: Clear semantics allow simulator to 
precisely predict switch behavior

Test generation: Semantics are simple enough 
that tools can reason about them 
automatically

P4

OpenFlow

Lack of formal and computer-readable 
specification makes both difficult to do 
automatically



Small number of devs create extensive set of automated tests

So far, we found over 100 bugs, in several components:

- Bugs in the Switch Software Stack

- Bugs in our SDN Controller

- Bugs in our P4 program

- Bugs in the P4 Runtime protocol

- Bugs in BMv2

Does Automated Switch Validation Work?



Conclusion



P4 provides a clear contract of switch behavior:
- Enables operation of a heterogeneous fleet
- Enables automated switch validation

(it's fast and finds a broad spectrum of bugs)

Key Takeaways

Sounds interesting? We're hiring! Talk to us :)
Email: heule@google.com


