

OVSPP: Hybrid Enhanced vSwitch for CORD-based Telco SFC

Tri Trinh, VNPT Daisuke Hara, NTT

Agenda

- Importance of Service Function Chaining (SFC) for Telco
- How to Implement SFC in CORD system
- SPP (Soft Patch Panel)
- Problem Statement
- Problem Analysis
- Our Solution OVSPP
- Experiments and Preliminary Results
- Current Status and Future Work
- Our Collaboration Activity Overview of ATII

Importance of Service Function Chaining (SFC) for Telco

Roadmap

 WHITEPAPER
 - LEASED LINE INTERNET
 - FTTH INTERNET, AUTO PROVISIONING
 VNPT has thousands of PoPs

 - XEN SERVER
 - vSWITCH, SFC, vCPE, OLT
 VNPT has thousands of PoPs

Research Project of vCPE Trial in VNPT

RESULTS

- Layer 3 Firewall
- Layer 4 Firewall
- Layer 7 Firewall
- IPS/IDS
- Bandwidth limit
- Performance test

PROBLEMS

- Manual control
- No Service Function Chaining

5

- Waste resources (VM)
- Bad performance

Current CORD System

Host Compute Node 1 Docker Container vSG 333 Docker Container vSG 111 vFW1 Snort1 Automatic control (XoS) eth1 192.168.0.1 eth0 10.7.1.3 NAT eth0 10.7.1.4 NAT eth1 192,168,0,1 No Service Function Chaining 2 **vSG VM 222** eth0.500 eth0.222 br-wan Save resources (VM, Container) Bad performance Port:3 Port:8 mgmtbr Controller Port2: Fabric:eth2 eth1 Head Node fabric eth3 eth2 192 fabric:1 10.8.1.1 mgmtbr abric:0 10.7.1. eth0 em1 121 fabric ONOS Controller Testclient lxc 1 container Testclient lxc 2 container Client Home eth: 222.333 eth: 222.111 Client Home Control 192.168.0.88 Data

L. Peterson et al., "Central office re-architected as a data center," IEEE Commun. Mag., vol. 54, no. 10, pp. 96–101, 2016 [2] =onr

Practical Needs of Service Function Chaining

How to Implement SFC in CORD system

8

How to Implement SFC in CORD system

How to Implement SFC in CORD system (cont.)

SPP (Soft Patch Panel)

SPP Features

SPP Features

- Very simple mechanism just connects the ports
- High performance using DPDK and above simplicity

SPP Features

• SPP provides two interfaces of DPDK, ring and vhost.

 \Box

Performance Evaluation

- SPP (ring) achieves the highest performance nearly 14.88 Mpps
- SPP (vhost) is still 1.5-1.8 times better than OVS-DPDK.

vSwitch Comparison

		SR-IOV	OVS	OVS-DPDK	SPP
Speed	Speed for packet processing	Good	Poor	ОК	Good 10 Gbps to 12 Gbps or more
Flexibility	Hardware limitation	OK NIC limited	Good	Good DPDK is now common	Good DPDK is now common
	Live migration	Poor	Good	ОК	OK (not yet verified)
Operability	Packet capture on host side	Poor pass through	OK duplicate: yes (less performance from 800Mbps) capture: no	OK duplicate: yes capture: no	Good duplicate: yes capture: yes (under test)

Problem Statement

SFC when implemented on CORD platform, suffers a serious performance issue of the overwhelmed switching entries it adds to CORD's Open vSwitch (OVS)

Problem Analysis

SFC adds a lot of flow entries to OVS

Compute Node 1

Problem Analysis

OVS performance decreases when # of active flow increases

[2] L. Molnár et al., "Dataplane Specialization for High-performance OpenFlow Software Switching," pp. 539–552, 2016

[7] B. Pfaff et al., "The Design and Implementation of Open vSwitch," Proc. 912th USENIX Symp. Networked Syst. Des. Implement. (NSDI '15), 2015

Problem Analysis

Customize dataplane for flow entries

[4] L. Molnár *et al.*, "Dataplane Specialization for High-performance OpenFlow Software Switching," pp. 539–552, 2016.

Our Solution - OVSPP -

Compute Node 1

Experiments and Preliminary Results

UDP throughput of different chaining scenarios

TCP throughput of different chaining scenarios

Comparing delay of different chaining scenarios

Current Status and Future Works

Our Collaboration Activity

ATII: APAC Telecom Innovation Initiative

 NTT and Telkom Indonesia established ATII in April 2017, to promote the creation of new network services considering social problems in the APAC region and to promote technical studies. ATII has extended to three operators structure with VNPT's joining.

ATII WP4: Study on vSwitch for Service Function Chaining (S³FC)

References

[1] B. H. J. Son, "AT&T' s CORD - the ultimate architecture born after decades of innovation in the communications network," Netmanias, pp. 1–7, 2016.

[2] L. Peterson *et al.*, "Central office re-architected as a data center," *IEEE Commun. Mag.*, vol. 54, no. 10, pp. 96–101, 2016.

[3] G. Rétvári, L. Molnár, G. Enyedi, and G. Pongrácz, "Dynamic Compilation and Optimization of Packet Processing Programs," pp. 6–7.

[4] L. Molnár *et al.*, "Dataplane Specialization for High-performance OpenFlow Software Switching," pp. 539–552, 2016.

[5] W. Zhang *et al.*, "OpenNetVM: A Platform for High Performance Network Service Chains," *HotMiddlebox 2016*, pp. 26–31, 2016.

[6] J. Hwang, T. George, K. K. Ramakrishnan, T. Wood, T. George, and I. Nsdi, "NetVM : High Performance and Flexible Networking Using Virtualization on Commodity Platforms This paper is included in the Proceedings of the," *Proc. 11th USENIX Symp. Networked Syst. Des. Implement. (NSDI 14)*, pp. 445–458, 2014.

[7] B. Pfaff *et al.*, "The Design and Implementation of Open vSwitch," *Proc. 12th USENIX Symp. Networked Syst. Des. Implement. (NSDI '15)*, 2015.

[8] G. P. Katsikas, "NFV Service Chains at the Speed of the Underlying Commodity Hardware," Doctoral Thesis in Information and Communication Technology School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm, 2018.

Thank You

(Backup) Performance Evaluation Environments

Configuration for SPP (same as OVS and SR-IOV)

Details

Hardware

(1)Physical server							
	CPU	model	Xeon E5-2690v3				
		freq	2.60[GHz]				
		cores	12				
		L3 Cache	30[MB]				
		processors	2				
	memory	capacity	96[GB]				
	NIC	10G port	4				
	NIC	1G port	4				
(2) Switch							
	SW1(1	LOGB)	AX3830S				
	SW2(1	LOGB)	Nexus3524X				

Software

OS	Linux(Ubuntu 14.04 LTS)	
Kernel	3.19.0-33-generic	
OpenStack	Kilo	
Qemu	v1.6.2	
DPDK	2.1.0-rc4	
Traffic	Pletaon(with DPDK)	
Generator	FRIGEN(WILLI DPDR)	
Application	2fwd(modified DPDK sample)	