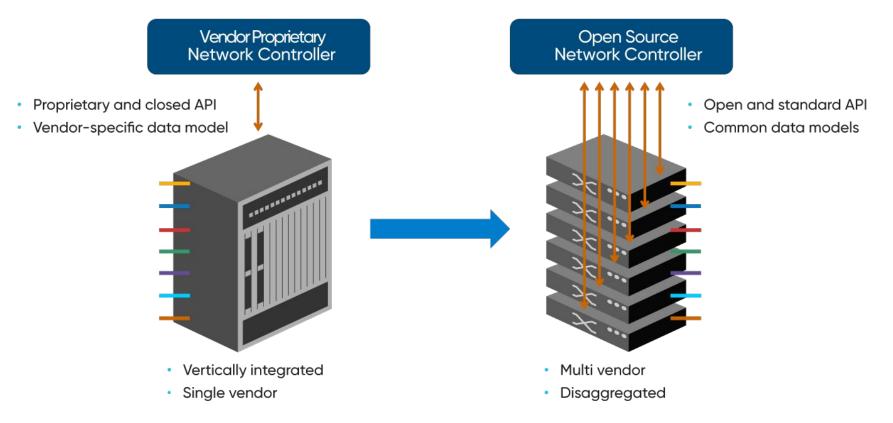
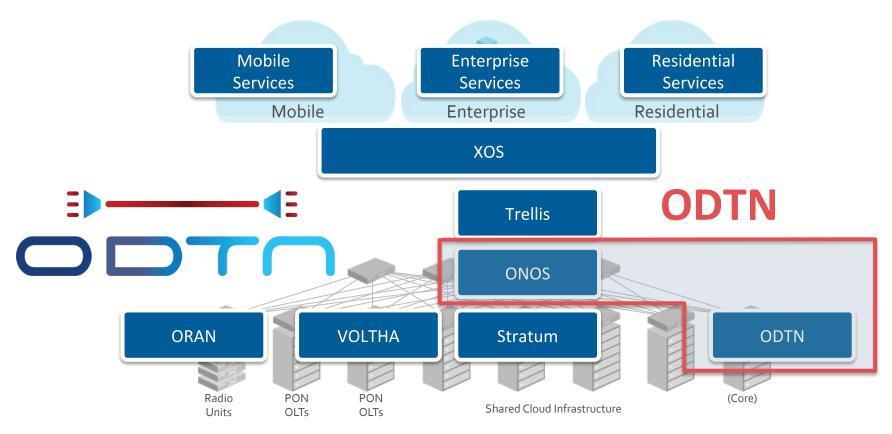


ODTN, Open Disaggregated Transport Network

Status, Current work, Roadmap Collaboration with TIP OOPT


Andrea Campanella, ONF andrea@opennetworking.org

Clear ask from operators


Open Source Data Center Interconnect (DCI) Solution

- 1. **Open and Standard APIs** to be vendor neutral and modular.
- 2. Open Source Software
- **3. Rapid cycle of innovations** can happen in terminal equipment (Transponders)
- 4. Clear separation of the behavior of the transponder and the line system (OLS)
- 5. Enable **Services** to be rapidly created, prototyped, tested
- 6. Support OLS that transport any kind of signal (Alien Wavelengths)
- 7. Modular and production ready platform
- 8. CI/CD pipeline for DevOps environment

Disaggregated Transport Networks

ONF Projects & Platforms

Incremental Approach

ODTN gets developed one step at a time through:

- definition of use-case
- choice of common API(s) to achieve given use-case
- implementation in ONOS
- test, debug and trials

Each phase builds on top of the previous one with new and further enhancements

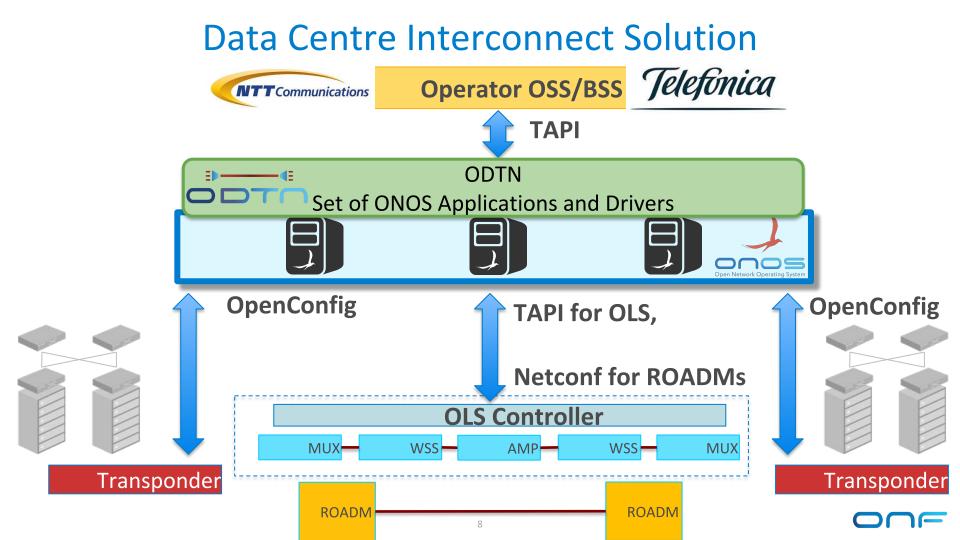
SDN and Disaggregation in Optical Transport Network

- Save Capex and Opex in Data Centre Interconnect deployments
- Rapid production adoption of innovations in terminal equipment
 - Enable vendors to innovate: speed, reach, QoT, ...
 - Let operators reap benefits through simple bookending
- Better LCCA (Life Cycle Cost Approach) and optimize equipment life-span
- Future proof your network avoiding vendor lock-in

Open APIs

Only **Open APIs with public models** will be used.

Reach industry consensus and agreement on Open and Public APIs


Open and Standard API:

- provide layers of abstractions
- enable plug and play
- mandate interaction between software and hardware
- **mix and match** of components
- **multi-vendor** integration

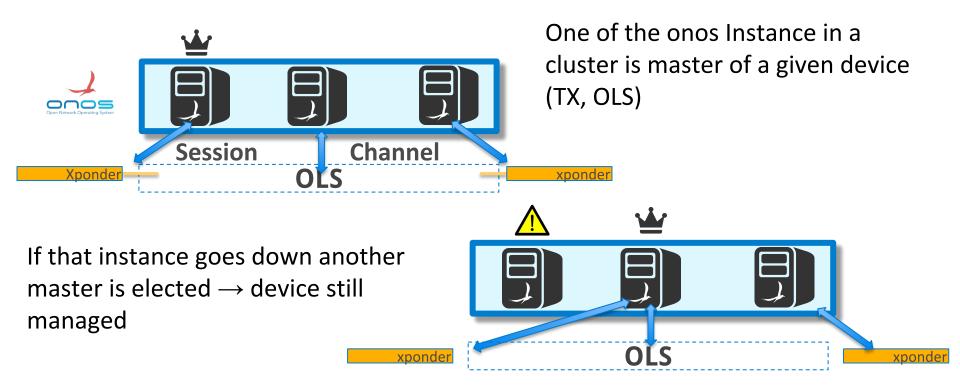
Topology at Telefonica Lab (madrid)

2x Edgecore Cassini TXs with -2 x ADVA Transponders Lumentum ACO Cards 1x ADVA OLS - 2x ZTE Transponders TAPIonos Edge-cor ΤΑΡΙ Edge-cor NETWORKS NETWORKS LUMENTUM over restconf LUMENTUM **OpenConfig over** Δ **OpenConfig over** Cassini Cassini **NETCONF NETCONF OLS Controller** Тχ MUX MUX-WSS AMP WSS

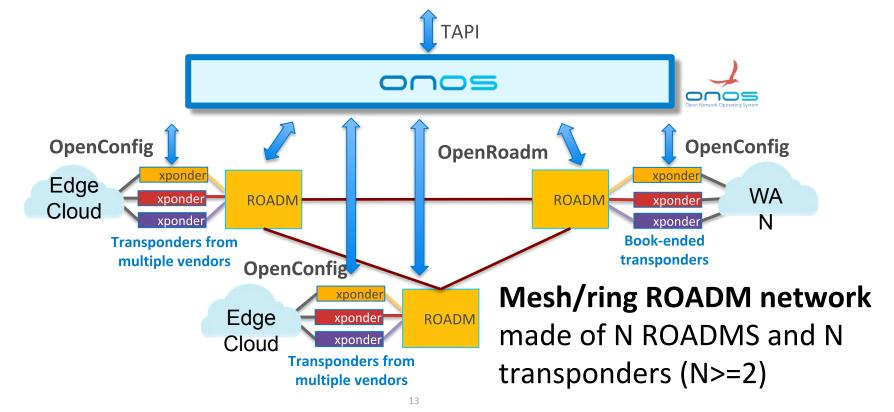
ODTN Capabilities

- 1. **Discover optical topology** with details (devices, ports, links)
- 2. Expose **topology details** on the **northbound TAPI API**
- 3. **Receive TAPI connectivity requests** from an OSS/BSS on NB
- 4. Automated compute of end to end optical path with lambda
- 5. Install configuration for optical path to OLS controller and Transponders line side
- 6. Transponder **cross connection** for client to line side connection
- 7. **Power** configuration on line side ports (manual)
- 8. **Modulation** configuration on line side ports (manual)
- 9. **ONOS** is deployed in a **three node instance** for resiliency and failover

Vendor independent optical configuration and management workflow(s) based on Open APIs and Open source Software

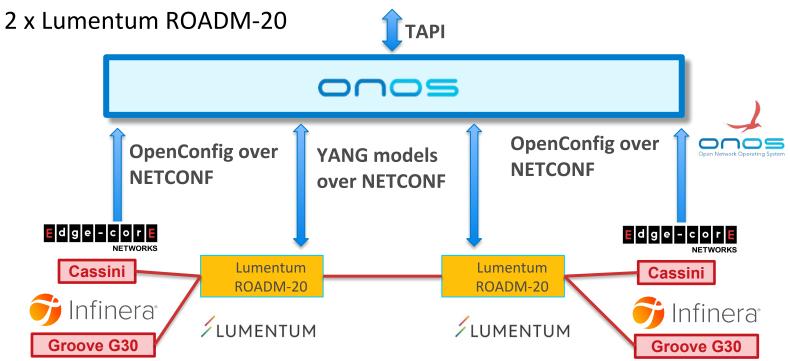

ODTN Interaction

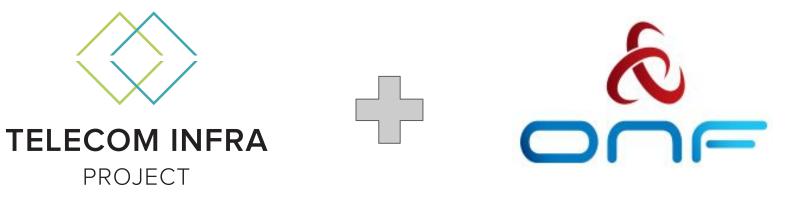
\$onos <controller_address> REST APIs: <onos-ip>:8181/onos/v1/docs/ UI: <onos-ip>:8181/onos/ui


Welcome to Open Network Operating	System	(ONOS)!																
	flows	: Query and program flow rules	d program flow rules Show/Hide List Operations Expand Operations								perations							
Documentation: wiki.onosproject.	DELETE	/flows/application/{appld}						Ren	noves flow n	ules by appli	ication ID							
Tutorials: tutorials.onospro	GET	flows/application/{appld} = JODOS. Open Metwork Operating System Onos +																
Mailing lists: lists.onosproject	DELETE	/flows	Ports for Optical Device netconf:10.128.200.2:830 (8 Total)															
Come help out! Find out how at:	GET	/flows	Search			3	10.200.2.0		,									
Hit ' <tabb>' for a list of availa and '[cmd]help' for help on a Hit '<ctrl-d>' or type 'system:s</ctrl-d></tabb>	POST	/flows	PORT ID	REVERSE PORT	NAME	ТҮРЕ	ENABLED	MIN FREQ (THz)	MAX FREQ (THz)	GRID (GHz)	CURRENT FREQ (THz)	MODULATIO	N POWER RANGE (dBr	CURRENT n) POWER (dBm	CURRENT INPUT POWER	TARGET POWER (dBm)	HAS TARGET POWER	SERVICE STATE
	DELETE	/flows/{deviceId}/{flowId}	10108	N/A	port-10108	OCH	true	190.7	195.45	50.0	0 Submit	Submit	(-30.01.0)		(ubiii)	© Submit	true	N/A
	GET	/flows/{deviceId}/{flowId}	10107	N/A	port-10107	OCH	true	190.7	195.45	50.0	0 Submit	Submit	(-30.01.0)			© Submit	true	N/A
	GET	/flows/{deviceId}	10106	N/A	port-10106	OCH	true	190.7	195.45	50.0	0 Submit	Submit	(-30.01.0)			© Submit	true	N/A
	POST	/flows/{deviceId}	10105	N/A	port-10105	OCH	true	190.7	195.45	50.0	0 Submit	Submit	(-30.01.0)			© Submit	true	N/A
			10104	N/A	port-10104	OCH	true	190.7	195.45	50.0	0 Submit	Submit	(-30.01.0)			© Submit	true	N/A
			10103	N/A	port-10103	OCH	true	190.7	195.45	50.0	0 Submit	Submit	(-30.01.0)			0 Submit	true	N/A
			10102	N/A	port-10102	OCH	true	190.7	195.45	50.0	0 Submit	Submit	(-30.01.0)			3 Submit	true	N/A
			10101	N/A	port-10101	OCH	true	190.7	195.45	50.0	0 Submit	Submit	(-30.01.0)	0.48	0.10	© Submit	true	N/A

Resilience and Failover

Current ODTN Architecture (ROADMS)


ODTN includes a complete OpenRoadm 2.2 driver


Topology at ONF Connect

- 2x Edgecore Cassini TXs with Lumentum ACO Cards
- 2x Groove G30 Infinera

-

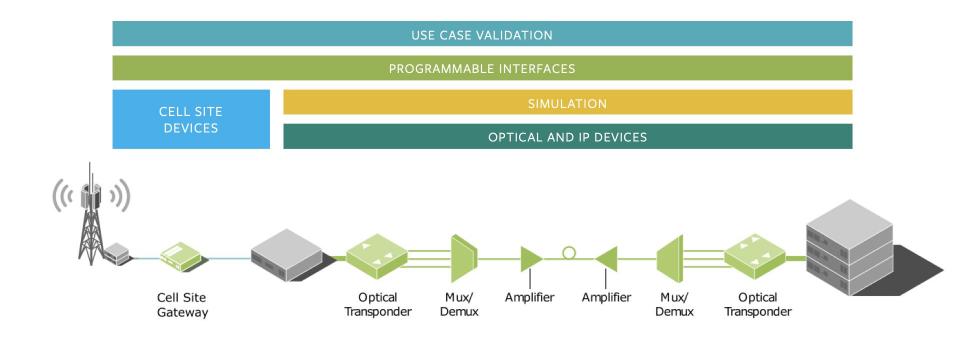
ODTN + OOPT

Joint Collaboration through Open Optical Packet Transport (OOPT) and Open Disaggregated Transport Network (ODTN) Announced at OFC 19

https://www.opennetworking.org/news-and-events/blog/onf-and-tip-collaborating-on-open-optical-tra nsport-solutions/

https://telecominfraproject.com/tip-at-ofc-2019-collaboration-with-onf-oopt-project-group-updates/

What is TIP?


FOUNDED IN 2016

Telecom Infra Project (TIP) is a collaborative community accelerating and transforming the way telecom infrastructure is created, taken to market, and deployed.

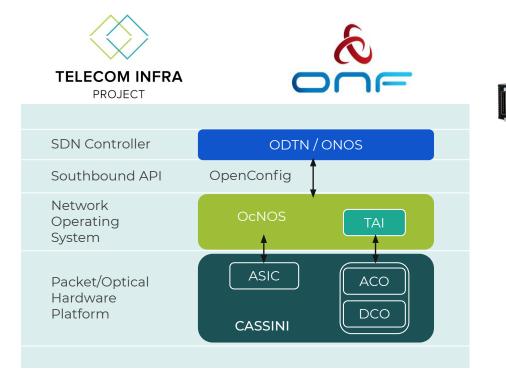
Together We Build

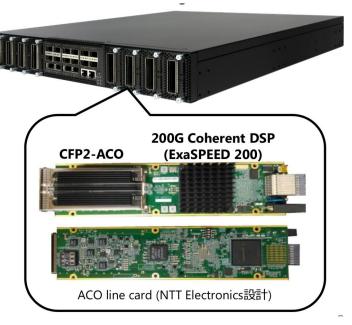
Open Optical & Packet Transport erate innovation in Our goal is to acce optical and etworks and ultimately he perators provide for communities better connecti e world.

OOPT - General Overview Current Areas of Focus

OOPT - General Overview Current OOPT Technologies

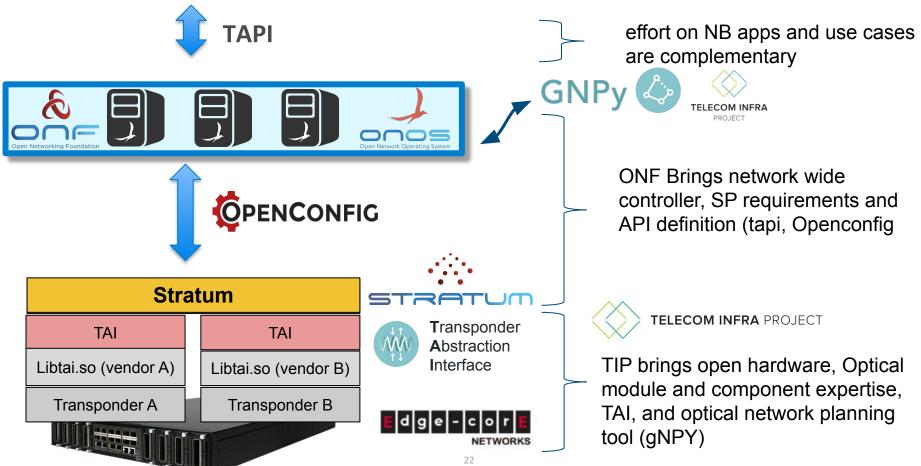
© 2019 Telecom Infra Project, Inc

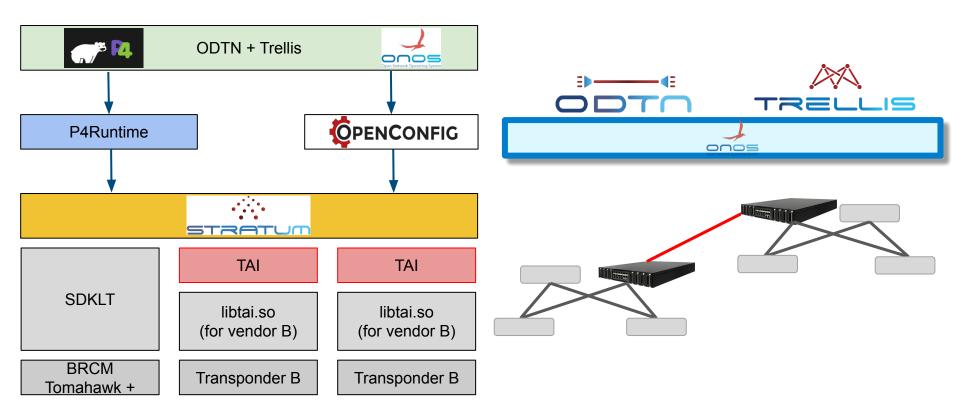

ONF TIP Collaboration


Collaboration Benefits and Goals

- 1. **Reduce duplicated effort** in Optical Disaggregation
- 2. **Share** knowledge, resources, findings and development
- 3. Discuss and achieve a stronger industry **consensus in APIs and solutions**
- 4. Stronger **impact** and accelerate **trials** and **production deployment**s of complete white box hardware and open source software in optical networks.

5. Common test labs


ONF ONOS Integration with TIP Cassini



Project synergies

ODTN with Stratum and Trellis

ODTN Roadmap

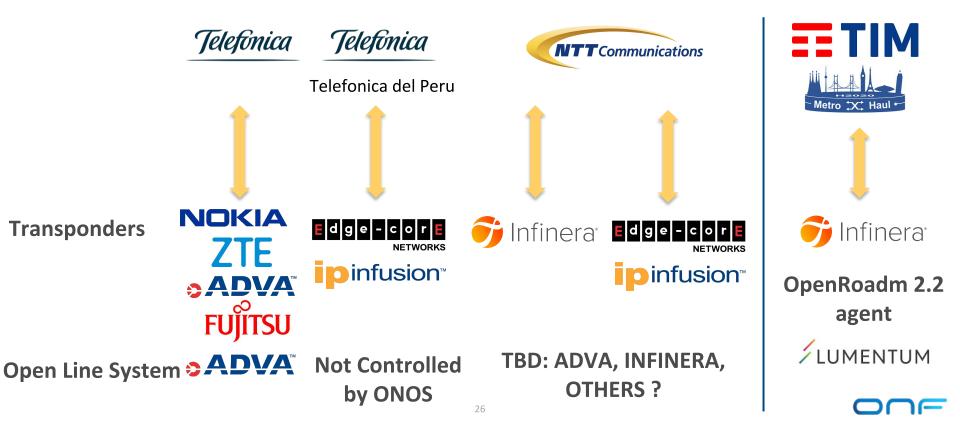
3 months time frame

- **1. FEC**
- 2. OSNR retrieval
- **3. GUI** extension with more information and parameters
- 4. Testing for an automated CI/CD with regression testing

6 months time frame

- 1. End to end Power configuration workflow with OLS negotiation
- 2. Platform hardening

Current and committed ODTN Work


1 year (and more) time frame

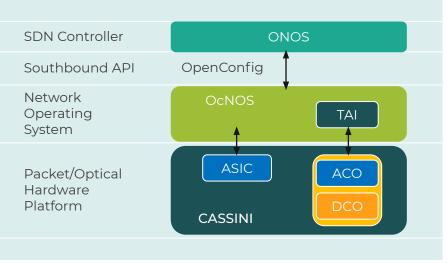
- 1. Alarms
- 2. Expanding pool of Transponders (Adva, Fujitsu, ZTE)
- 3. Expanding Pools of OLS/Roadm
- 4. Integration with **Optical planning tools (gNPy)**
- 5. In band control

Trial Plans

ODTN is in different stages of lab/field trial with multiple operators with different vendors

Telefónica del Perú Cassini Field Trial, Sept '19

Jelefínica


Evaluation scenarios

- 1. Metro: Optical layer 1 interoperability with OEM O-SNCP devices.
- 2. Longhaul: Optical layer 0/1 reach performance in 100G and 200G mode.

NTTElectronics

Possible Extension of trial with OLS (Huawei) Feb/March '20

Community

Great Exemplar Platform Community, Thanks you!

Community

NOKIA DI Infinera DI ADVA Edge-core Nokia Di Infinera Di ADVA Edge-core Networks Networks FUITSU ESterliteTech ZTE

Informational reference Design published April 2019 Use Case, API and project milestones definition

https://www.opennetworking.org/wp-content/uploads/2019/04/ONF-Info-1002

<u>-ODTN-032919.pdf</u>

andrea@opennetworking.org

Takeaways

- ODTN is building, with the help of partners and collaborators, an open source software stack for optical networks
- ODTN Uses **standard and open device APIS** (OpenConfig for Transponders, TAPI for OLS, OpenROADM 2.2 for ROADMs)
- ODTN uses **TAPI** as a standard and open API on the northbound
- ODTN leverages architecture, performance e scalability of **ONOS**
- ODTN integrates a **wide variety of vendors** for network equipment.
- Incremental approach towards production readiness
- Lab trials with major operators → feedback loop of requirements and enhancements
- OOPT(TIP) and ODTN(ONF) create a common open source optical ecosystem with strong industry consensus

ONF's 2019 Contributor Award

Designed to recognize top ONF Community members who are:

- Top Code Contributors (or Code Removers)
- Top Reviewers and Mentors
- Top Ambassadors or Advocates
- Contributors of Significant Components of a system
- Consistently "chopping wood and carrying water" (helping everyone be more productive)

Ramon Casellas

Andrea Campanella

Quan Pham Van

Konrad Mrówka

ODTN Wiki: https://wiki.onosproject.org/display/ODTN/ODTN

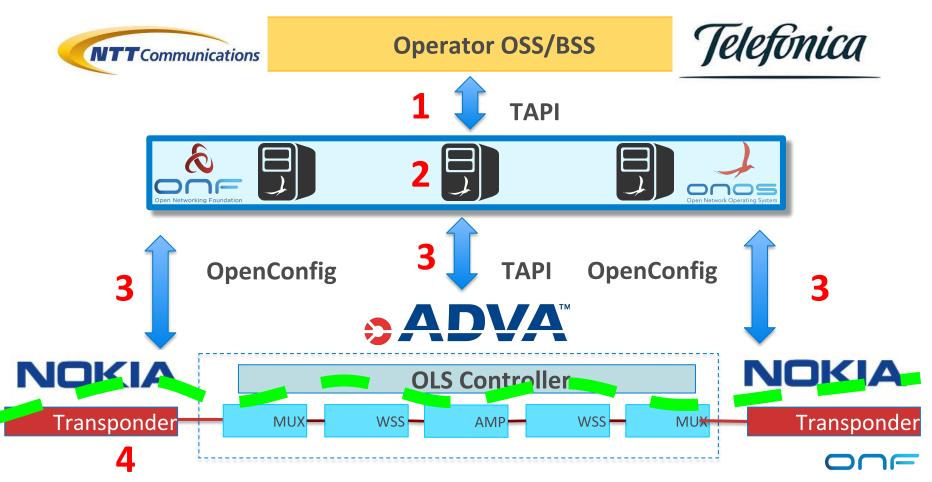
Still lots to do, come and join us!

odtn@opennetworking.org

Questions ?

andrea@opennetworking.org

Thank You

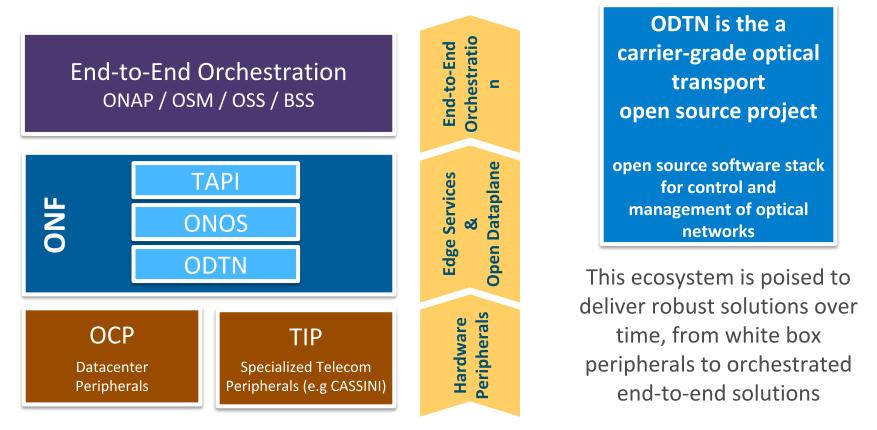

Why OpenConfig for TX

- Well know API
- **Supported** already by many vendors
- **Proper abstraction** model for transponder devices capabilities and information
- Defines capabilities at **correct level for programmability** but also abstraction from physical details
- Capability and Flexibility to **support vendor specific features**
- Can represent both **multi-layer** w/ and w/o OTN
- Extensible and Open Source

Why TAPI for ONOS Northbound and OLS ?

- Well know API
- Extensible and Open Source
- **Tested and deployed** (See Interop Testing)
- **Proper abstraction** for high level optical domain programming
- Can represent both **multi-layer** end to end provisioning with optical parameters
- Great community of vendors and Service Providers

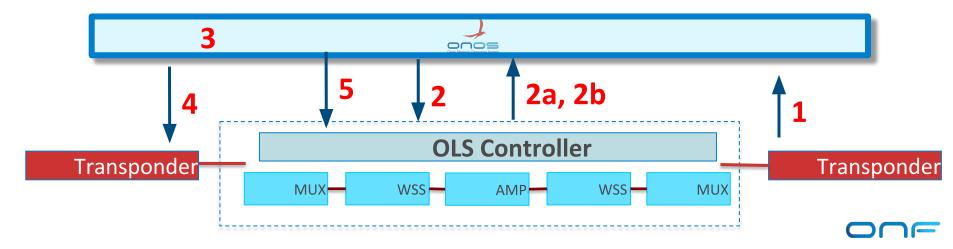
Workflow



ODTN workflow and Capabilities

Service Provisioning

- 1. **OSS/BSS requests connectivity-service with TAPI**
- 2. Connectivity services and provisioning config is stored in distributed Maps for redundancy and failover
- 3. ONOS translates into **Optical Intent and TX configuration**
- 4. provisions a connectivity service through **TAPI** on OLS
- 5. Logical channel (cross-connection from client to line side) and wavelength Tuning through **Openconfig** on Transponders


Where ODTN Fits into Open Source Ecosystem

Power Setup workflow

- 1) Retrieve target-power/range from RX transponder, also transmitting capabilities on TX Transponder
- Request path computation to OLS with Transponder RX target-power range min/max and TX range min/max (from 2.2 TAPI → range target output power on SIP)
 - a) If path computation success -> 3,4 \rightarrow answer need to contain a target power
 - b) if path computation fail for power budget -> re-tune RX target-power transponder if possible -> 2
- 3) Configure wave and power on transponder TX. Power is the value returned from OLS.
- 4) Connectivity service establishment on OLS with constraints on min/max

PowerConfig behaviour

Physical Simulation Environment (gNPY)

Open Source Optical Simulation tool

Currently working in offline mode, with manual feedback to controller

Feedback loop with ONOS gathering information on current networks,

through open and common API (TAPI)

