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Motivation: OMEC SPGW-U Architecture Layout

• 4 CPUs
• Uplink traffic (S1U RX → SGI TX)
• Downlink traffic (SGI RX → S1U TX)
• CP communication
• Kernel communication

• L3 & L2 updates (route + arp)
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Current (over-)allocation of Compute Resources
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Motivation: OMEC SPGW-U Architecture Layout

• Spin up complete instances (in the worst case)
• Over-allocation of CPU resources?
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Is the scale-out too expensive?
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Motivation: OMEC SPGW-U Architecture Layout

• ARP resolution efficiency
• CPUDL/UL → CPUARP → {KERNEL} → CPUARP → CPUDL/UL

• ?= 4 CPU hops
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Can the base design be improved?



Motivation: OMEC SPGW-U Architecture Layout

• Containerized solution
• KNI module is a major hurdle
• AF_PACKET + veth pair mode available, but not default
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Is SPGW-U deployment friendly?



Motivation: OMEC SPGW-U Architecture Layout

• CPU (re-)configuration needs a process restart, re-compilation or in the 
worst case, code re-write altogether
• Hard-coded

• Single interface / Multi-interfaces
• Pipelined / Run-to-completion

• Fine-grained CPU scheduling over individual SPGWU pipeline 
submodules

• Optimizations of individual submodules
• E.g.: Apply vector operation(s) for processing batch of packets within each 

submodule of the pipeline

9

SPGWU user configurability



Can we rely on a programmable platform to
ease our development/deployment?
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BESS

• Clean-slate internal architecture with NFV in mind
• Highly flexible & customizable

• Creating BESS applications
• Modular pipeline represented as a directed acyclic graph
• Each module can run arbitrary code
• Independently extensible & optimizable

• Configure & control BESS
• Via NF controller
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Programmable platform for data plane development



BESS Architecture Overview
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DAG of interconnecting modules
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BESS: Resource Aware CPU Scheduling

• In terms of CPU utilization & bandwidth
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Allows flexible scheduling policies for the data path



BESS: Resource Aware CPU Scheduling
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14

Allows flexible scheduling policies for the data path
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BESS: Resource Aware CPU Scheduling

• In terms of CPU utilization & bandwidth
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Allows flexible scheduling policies for the data path
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BESS: Resource Aware CPU Scheduling

• In terms of CPU utilization & bandwidth
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Allows flexible scheduling policies for the data path
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BESS: Resource Aware CPU Scheduling

• In terms of CPU utilization & bandwidth
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Allows flexible scheduling policies for the data path
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OMEC over BESS

• More modular
• Concentrate only on core business logic (on VNF development) and not the infrastructure development

• SLOC of individual modules: ~= 200
• Mostly rely on built-in BESS modules resulting in a thin stack
• GRPC-based communication to control daemon

• Controllers based in python & C++

• (Route+L2 neighbor) python controller based on pyroute2: SLOC ~= 350

• Ease of customizing pipeline at runtime
• e.g. CPU scheduling, adding/removing specific modules

• Configuration ease
• Multi-workers enable/disable at ease

• Economical usage of CPU usage
• Run individual modules on difference CPUs

• Run to completion vs pipeline become run-time choices (& not compile-time)

• No need to restart the daemon process for config updates
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Why architecting user-plane with BESS is a good idea: key benefits



OMEC over BESS

• Operator friendly
• Route control (more akin to deployment)

• Interfacing with the kernel is easier
• Netlink messages neighbor + route updates

• KNI support not needed
• veth pair + AF_PACKET interface

• AF_PACKET/AF_XDP integration easier (cloud-native friendly) for fastpath
• Monitoring ease at runtime

• tcpdump
• Visualization tool
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Why architecting user-plane with BESS is a good idea: key benefits



DEMO
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SPGW-U Downlink DAG
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FPI: DPDK PMD

CPU Scheduler:
CPU 0

Rate limit scheduler:
1000x/sec

Control Plane
- add_session()
- delete_session()
- show_records() Route Control

- insert_route()
- delete_route()
- add_neighbor()
- delete_neighbor()

Rate limit scheduler:
1000x/sec



NGIC/OMEC vs SPGWU/BESS
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- NGIC/OMEC SPGWU/BESS

Runtime model • rtc • rtc (dynamic)
• pipelined (dynamic)
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Monitoring utilities • shell (basic stats)
• bessctl shell
• tcpdump

• GUI



NGIC/OMEC vs SPGWU/BESS
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- NGIC/OMEC SPGWU/BESS

Runtime model • rtc • rtc (dynamic)
• pipelined (dynamic)

Monitoring utilities • shell (basic stats)
• bessctl shell
• tcpdump

• GUI

(Re-)configuration ease • Process restart
• Code re-write

• Process reset not needed
• Pipeline graph re-set



Preliminary Performance Evaluation

• Hardware
• Intel Xeon Platinum 8170 @ 2.10 GHz (SKX) 
• 98 GB RAM
• Intel Fortville 10 Gbps (dual port)

• Packet generator
• Il_trafficgen
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Testbed Specs & Results
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Implementation

• What’s done
• Encap/Decap
• CP interfacing via ZMQ bus
• IP Reassembly
• IP Fragmentation
• GTP Echo/Response
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Current Status

• In progress
• Charging
• Metering

• All other VNFs (e.g. CP) remain unchanged



Implementation

• What’s being planned to be upstreamed
• BESS ported to dpdk-19.08
• IP fragmentation and reassembly modules
• Other minor optimizations to existing modules

• SPGWU over BESS is available @:
• ________________
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Contribution to the open source community
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