
OMEC over the Berkeley Extensible
Software Switch

Muhammad Asim Jamshed, Saikrishna Edupuganti and Christian Maciocco
Intel Labs

Outline

• OMEC Overview
• Motivation: The need for an SPGW revamp
• BESS
• Current Status
• Summary

OMEC Overview

3

Mobile Network Core or
Evolved Packet Core (EPC)

Serving Gateway
Control
(SGW-C)

Packet Gateway
Control
(PGW-C)

Serving Gateway
User Data
(SGW-U)

Packet Gateway
User Data
(PGW-U)

Mobility
Management Entity

(MME)

Home Subscription
Server
(HSS)

Policy Charging
Rules Function

(PCRF)
Subscriber
Database

Internet

Data

Contro
l

Access
Network

①

②
③

⑤

④

⑥
Data
⑦

MME: Mobility Management Engine (Control)
HSS: Home Subscriber Services (Authentication)
PCRF: Policy and Charging Rules Function
SGW-C: Serving Gateway Control
SGW-U: Serving Gateway User
PGW-C: Packet Gateway Control
PGW-U: Packet Gateway User

CO-LOCATED DP

CO-LOCATED CPS11

S6a

S5/S8S1U SGI

⑥⑤

OMEC Overview

4

Mobile Network Core or
Evolved Packet Core (EPC)

Serving/Packet Gateway Control
(SPGW-C)

Serving/Packet Gateway User Data
(SPGW-U)

Mobility
Management Entity

(MME)

Home Subscription
Server
(HSS)

Policy Charging
Rules Function

(PCRF)
Subscriber
Database

Internet

Data

Contro
l

Access
Network

①

②
③

④

Data

MME: Mobility Management Engine (Control)
HSS: Home Subscriber Services (Authentication)
PCRF: Policy and Charging Rules Function
SPGW-C: Serving/Packet Gateway Control
SPGW-U: Serving/Packet Gateway User

• Default SPGW-C (CP) + SPGW-U (DP)

S11

S6a

S1U SGI

Motivation: OMEC SPGW-U Architecture Layout

• 4 CPUs
• Uplink traffic (S1U RX → SGI TX)
• Downlink traffic (SGI RX → S1U TX)
• CP communication
• Kernel communication

• L3 & L2 updates (route + arp)

5

Current (over-)allocation of Compute Resources

⑥⑤ Serving/Packet Gateway User Data
(SPGW-U)

Internet

Data

Access
Network Data

S1U SGI

• Are separate CPUs needed for
• CP communication?
• ARP/Route resolution(s) via the

kernel?

Motivation: OMEC SPGW-U Architecture Layout

• Spin up complete instances (in the worst case)
• Over-allocation of CPU resources?

6

Is the scale-out too expensive?

SPGW-
U

SPGW-
U

SPGW-
USPGW-U

SPGW-
U

SPGW-
U

SPGW-
USPGW-U

SPGW-
U

SPGW-
U

SPGW-
USPGW-U

SPGW-
U

SPGW-
U

SPGW-
USPGW-U

SPGW-
U

SPGW-
U

SPGW-
USPGW-U

(4 x n)

Motivation: OMEC SPGW-U Architecture Layout

• ARP resolution efficiency
• CPUDL/UL → CPUARP → {KERNEL} → CPUARP → CPUDL/UL

• ?= 4 CPU hops

7

Can the base design be improved?

Motivation: OMEC SPGW-U Architecture Layout

• Containerized solution
• KNI module is a major hurdle
• AF_PACKET + veth pair mode available, but not default

8

Is SPGW-U deployment friendly?

Motivation: OMEC SPGW-U Architecture Layout

• CPU (re-)configuration needs a process restart, re-compilation or in the
worst case, code re-write altogether
• Hard-coded

• Single interface / Multi-interfaces
• Pipelined / Run-to-completion

• Fine-grained CPU scheduling over individual SPGWU pipeline
submodules

• Optimizations of individual submodules
• E.g.: Apply vector operation(s) for processing batch of packets within each

submodule of the pipeline

9

SPGWU user configurability

Can we rely on a programmable platform to
ease our development/deployment?

10

BESS

• Clean-slate internal architecture with NFV in mind
• Highly flexible & customizable

• Creating BESS applications
• Modular pipeline represented as a directed acyclic graph
• Each module can run arbitrary code
• Independently extensible & optimizable

• Configure & control BESS
• Via NF controller

11

Programmable platform for data plane development

BESS Architecture Overview

12

DAG of interconnecting modules

BESS Daemon
(running in user space)

dp
dk

pm
d

Li
nu

x
dpdk

pm
d

Linux
A

F_
U

N
IX

, P
C

A
P

VF
IO

, A
F_

PK
T,

 A
F_

XD
P

A
F_U

N
IX, PC

A
P

VFIO
, A

F_PK
T, A

F_XD
P

NET_CONTROLLER
Policy updates

via CP

HOST_CONTROLLER
Neighbor updates

via OS

BESS: Resource Aware CPU Scheduling

• In terms of CPU utilization & bandwidth

13

Allows flexible scheduling policies for the data path

BESS: Resource Aware CPU Scheduling

• In terms of CPU utilization & bandwidth

14

Allows flexible scheduling policies for the data path

S1U In SGI OutFilter

RtrGTPDecap EtherEncap+
Cksum

Q1

VDev
(to kernel)

CPU 0

CPU 1 CPU 1

Q2

VDev
(to kernel)

BESS: Resource Aware CPU Scheduling

• In terms of CPU utilization & bandwidth

15

Allows flexible scheduling policies for the data path

S1U In SGI OutFilter

RtrGTPDecap EtherEncap+
Cksum

Q1

VDev
(to kernel)

Q2

VDev
(to kernel)

Higher Priority

Lower Priority

Lower Priority

BESS: Resource Aware CPU Scheduling

• In terms of CPU utilization & bandwidth

16

Allows flexible scheduling policies for the data path

S1U In SGI OutFilter

RtrGTPDecap EtherEncap+
Cksum

Q1

VDev
(to kernel)

Q2

VDev
(to kernel)

Should not consume > 10% CPU

BESS: Resource Aware CPU Scheduling

• In terms of CPU utilization & bandwidth

17

Allows flexible scheduling policies for the data path

S1U In SGI OutFilter

RtrGTPDecap EtherEncap+
Cksum

Q1

VDev
(to kernel)

Q2

VDev
(to kernel)

Limit by 10 Kbps

OMEC over BESS

• More modular
• Concentrate only on core business logic (on VNF development) and not the infrastructure development

• SLOC of individual modules: ~= 200
• Mostly rely on built-in BESS modules resulting in a thin stack
• GRPC-based communication to control daemon

• Controllers based in python & C++

• (Route+L2 neighbor) python controller based on pyroute2: SLOC ~= 350

• Ease of customizing pipeline at runtime
• e.g. CPU scheduling, adding/removing specific modules

• Configuration ease
• Multi-workers enable/disable at ease

• Economical usage of CPU usage
• Run individual modules on difference CPUs

• Run to completion vs pipeline become run-time choices (& not compile-time)

• No need to restart the daemon process for config updates

18

Why architecting user-plane with BESS is a good idea: key benefits

OMEC over BESS

• Operator friendly
• Route control (more akin to deployment)

• Interfacing with the kernel is easier
• Netlink messages neighbor + route updates

• KNI support not needed
• veth pair + AF_PACKET interface

• AF_PACKET/AF_XDP integration easier (cloud-native friendly) for fastpath
• Monitoring ease at runtime

• tcpdump
• Visualization tool

19

Why architecting user-plane with BESS is a good idea: key benefits

DEMO

20

SPGW-U Downlink DAG

21

FPI: DPDK PMD

CPU Scheduler:
CPU 0

Rate limit scheduler:
1000x/sec

Control Plane
- add_session()
- delete_session()
- show_records() Route Control

- insert_route()
- delete_route()
- add_neighbor()
- delete_neighbor()

Rate limit scheduler:
1000x/sec

NGIC/OMEC vs SPGWU/BESS

22

- NGIC/OMEC SPGWU/BESS

Runtime model • rtc • rtc (dynamic)
• pipelined (dynamic)

NGIC/OMEC vs SPGWU/BESS

23

- NGIC/OMEC SPGWU/BESS

Runtime model • rtc • rtc (dynamic)
• pipelined (dynamic)

Monitoring utilities • shell (basic stats)
• bessctl shell
• tcpdump

• GUI

NGIC/OMEC vs SPGWU/BESS

24

- NGIC/OMEC SPGWU/BESS

Runtime model • rtc • rtc (dynamic)
• pipelined (dynamic)

Monitoring utilities • shell (basic stats)
• bessctl shell
• tcpdump

• GUI

(Re-)configuration ease • Process restart
• Code re-write

• Process reset not needed
• Pipeline graph re-set

Preliminary Performance Evaluation

• Hardware
• Intel Xeon Platinum 8170 @ 2.10 GHz (SKX)
• 98 GB RAM
• Intel Fortville 10 Gbps (dual port)

• Packet generator
• Il_trafficgen

25

Testbed Specs & Results

0
1
2
3
4
5
6

128 512 1024

Pa
ck

et
 R

at
e

(M
PP

S)

Packet Size (B)

Processing rate @ 0%
packet loss

ngic-omec spgwu-bess

4 CPUs 2 CPUs

Implementation

• What’s done
• Encap/Decap
• CP interfacing via ZMQ bus
• IP Reassembly
• IP Fragmentation
• GTP Echo/Response

26

Current Status

• In progress
• Charging
• Metering

• All other VNFs (e.g. CP) remain unchanged

Implementation

• What’s being planned to be upstreamed
• BESS ported to dpdk-19.08
• IP fragmentation and reassembly modules
• Other minor optimizations to existing modules

• SPGWU over BESS is available @:
• ________________

27

Contribution to the open source community

Thank You

Follow Up Links:
XXXX

