

Introducing Magma: A Converged Core Network Solution

Shah Rahman, Amar Padmanabhan **Facebook Connectivity**

GLOBAL ACCESS IS IMPROVING

51%

INDIVIDUALS CONNECTED TO THE INTERNET

Source: ITU, Internet Inclusivity Index 2019, Economist Intelligence Unit

4G PENETRATION IS INCREASING

33% то 60%

GLOBAL 4G COVERAGE BY 2022

The Internet Has Become A Crucial Tool For Improving Livelihoods

Learn job related skills

E 74%

77%

Discover new job opportunities

60%

Pursue an education

Source: Internet inclusivity Index 2019, The Economist Intelligence Unit.

The Problem

Network Performance is **At Risk**

3.3 billion people in **developing** and **emerging** markets are at risk of degraded network performance by 2023

Source: Facebook Connectivity Internal Research 2019 connectivity measurements exclude China

The Challenges Facing Global Operators Today

Source: GSMA Intelligence, 2019

Why Facebook And Connectivity?

Our Business Depends On Good Connectivity

FBC

FBC

FBC

FBC Infrastructure

EXPRESS Wi-Fi

Providing fast, reliable, Wi-Fi when and where people need it.

TERRAGRAPH

Innovative, high-speed mmWave backhaul solutions for dense urban and suburban environments.

MAGMA

Open source mobile packet core designed to help operators extend the reach of their existing network.

Facebook Connectivity Mission

Bring more people online to a faster internet

Magma Mission

Bring more people online by enabling service providers with open, flexible, and extensible network solutions

Magma + Ecosystem The de-facto cloud-native, DevOps core network stack in the industry

Magma End Game

Vision 2020 and beyond ...

Software Components

FBC, FB / non-FB open source projects, e.g., NMS, OAI, PyTorch, etc.

Startup and vendor licensed components, e.g., Qosmos, Quortos, etc.

Intelligent Platform

+

Deployment Infrastructure

Cloud and on-premise infra, e.g., AWS, Docker, OpenStack, K8s, etc.

OS and data plane infra, e.g., Linux, OVS, KVM, VMware, etc.

Federation Gateway

Converged Access Gateway

+

"The unified packet core supporting any wireless access networks"

Magma takeaway 1: Modularize the cellular network

- Distribute the policy enforcement points
 - Let the ideal topology decide the policy enforcement points \bigcirc
- Move policy enforcement point to software
 - Leverage rapid iteration and programmability of software. \bigcirc
- Keep core network simple
 - Cheap: Core networks only need to move packets fast. \bigcirc
 - Allows for easy scale up/down. \bigcirc

Encapsulation of state

Traditional datacenters: State throughout the network

Each middlebox has state associated with workloads

- State needs to be in sync across services (config + runtime)
- 2. Independently solved scaleout + high availability
- 3. Hard to adapt to dynamic workloads (tasks/VMs lifecycle/moving)

Modern networks: Encapsulation as an abstractions

Encapsulation of state:

- 1. Network state coupled with workloads, allows for dynamism.
 - a. Provision the network for the workload
- 2. Fate sharing with workload. i.e. workload fails with the network service.
- 3. Natural scaleout.

Use modern production grade distributed system techniques to manage state.

18

Encapsulation in traditional LTE networks

UE state exists in all nodes

- No clear abstractions
- Air interface specifics leak through the network

State in traditional LTE networks example

UE State in MME	UE State in SGW	UE State in PGW
NAS state, Identifiers	Bearer state/lifecycle	UE IP address allocation
Auth vectors	Lawful intercept	UE policy enforcement
User APN profiles	Idle state buffering	Bearer state/lifecycle
User plane state for multiple SGWs (S11)	Per UE transport marking	Per UE transport marking

State spread across nodes for the same UE Symmetrically maintained between nodes Note: eNB also has per UE state

Magma takeaway 2: Encapsulate

- Encapsulate UE state
 - Config: Maintained in a central location and propagated to the edge
 - Runtime state: Encapsulated at the edge
- Move state to the edge to allow for fate sharing with the Radio
- Abstract away radio specific technology
 - Normalize protocol specifics early

State in control planes

Magma takeaway 3: State in the control plane

• Desired state model

- Centralized through APIs
- User inputs intent, control plane enforces it
- Control logic completely decoupled from datapath
 - Independent evolution of control + datapath
- Use modern distributed systems to propogate state
 - Http2, Protobuf, K/V store

Software release and fault domains

Software delivery: Fault isolation a necessity

Magma takeaway 4: Software upgrades

- Design for localized fault domains
 - Small upgrade domains for dataplane elements enabling gradual rollout
 - Control plane independent from dataplane operations.

elements enabling gradual rollout lane operations.

Summary

- allow for network flexibility
- Abstract away air interface specifics to the edge
- Design for upgrades by minimizing fault domains

Hence Magma!

Modularize the network into a policy rich edge in software and simple fabric to

Encapsulate UE state and use proven techniques to distribute the state. Adopt a desired state store model with a logically centralized controller

To Sum Up ...

How will Magma add Value to the Industry?

Redefine EPC into an open, distributed and intelligent "Core Network Platform" usable by any wireless access networks

Magma Project by the Numbers

6 months old, 294 stars, 71 forks (42 external to Facebook), 49 contributors (8 external)

1,585

Commits to-date

Top 3 Committers:

Jacky Tian Marie Bremner Scott Smith Clones in last 14 days 369 Unique Cloners

887

5,596

Views in last 14 days

437 Unique Visitors

DOTE IN

facebook connectivity

-

Thank You

Follow Up Links:

#